Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Hexaaquamanganese(II) bis[(4-oxo-4*H*-pyridin-1-yl)acetate] dihydrate

Zhu-Yan Zhang, Shan Gao,* Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

College of Chemistry and Chemical Technology, Heilongjiang University, Harbin, 150080, People's Republic of China

Correspondence e-mail: shangao67@yahoo.com

Key indicators

Single-crystal X-ray study $T=296~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{\mathring{A}}$ R factor = 0.032 wR factor = 0.085 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title complex, $[Mn(H_2O)_6](C_7H_6NO_3)_2 \cdot 2H_2O$, was synthesized by the reaction of $MnCl_2 \cdot 4H_2O$ and $(4\text{-}oxo\text{-}4H\text{-}pyrindin-1-yl})$ acetic acid in aqueous solution. The manganese(II) ion, which lies on a center of symmetry, is octahedrally coordinated by six water molecules $[Mn-O=2.166\ (1)-2.177\ (1)\ \mathring{A}]$. A three-dimensional supramolecular framework is formed via $O-H\cdots O$ hydrogen bonds between the anions and cations.

Received 30 November 2004 Accepted 3 December 2004 Online 11 December 2004

Comment

A recent study documented the structure of the complexes $[M(H_2O)_6](4\text{-OPA})_2\cdot 2H_2O$ [M=Zn, Ni; 4-OPA is (4-oxo-4H-pyridin-1-yl) acetate] (Gao *et al.*, 2004; Zhang *et al.*, 2004). The manganese(II) analogue was synthesized under similar reaction conditions in this study. The title complex, (I) (Fig. 1), in which Mn lies on a center of symmetry, is isomorphous with the Zn^{II} and Ni^{II} complexes, whose structures have been presented in detail.

Experimental

The title complex was prepared by the addition of $MnCl_2\cdot 4H_2O$ (3.96 g, 20 mmol) to an aqueous solution of (4-oxo-4*H*-pyridin-1-yl)acetic acid (5.84 g, 40 mmol), and the pH was adjusted to 7 with 0.2 *M* NaOH solution. Colorless single crystals were obtained from the filtered solution over several days. Analysis calculated for $[Mn(H_2O)_6](C_7H_6NO_3)_2\cdot 2H_2O$: C 33.41, H 5.61, N 5.57%; found: C 33.29, H 5.50, N 5.68%.

Crystal data

 $[Mn(H_2O)_6](C_7H_6NO_3)_2 \cdot 2H_2O$ $D_x = 1.517 \text{ Mg m}^{-3}$ $M_r = 503.32$ Mo $K\alpha$ radiation Monoclinic, P2₁/c Cell parameters from 10 242 reflections a = 12.561 (3) Å b = 12.949 (3) Å $\theta = 3.0-27.5^{\circ}$ c = 6.855 (1) Å $\mu = 0.67 \text{ mm}^{-1}$ $\beta = 98.68 (3)^{\circ}$ T = 296 (2) K $V = 1102.2 (4) \text{ Å}^3$ Prism, colorless $0.39 \times 0.26 \times 0.19 \text{ mm}$ Z = 2

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

Rigaku R-AXIS RAPID diffractometer ω scans Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.780, T_{\max} = 0.883$ 10 259 measured reflections

Refinement

refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.085$ S = 1.04 2509 reflections 166 parameters H atoms treated by a mixture of independent and constrained 2509 independent reflections 2273 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.024$ $\theta_{\rm max} = 27.5^{\circ}$ $h = -16 \rightarrow 16$ $k = -16 \rightarrow 16$ $l = -8 \rightarrow 8$

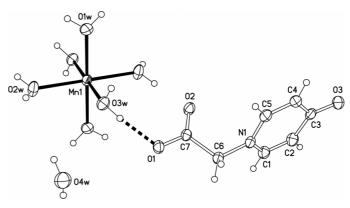
$$\begin{split} w1/[\sigma^2(F_{\rm o}^2) + (0.047P)^2 \\ &+ 0.3365P]\\ \text{where } P(F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.29 \text{ e Å}^{-3} \\ \Delta\rho_{\rm min} = -0.34 \text{ e Å}^{-3} \end{split}$$

Table 1 Selected geometric parameters (\mathring{A} , °).

Mn1-O1w	2.177 (1)	O2-C7	1.241 (2)
Mn1-O2w	2.166(1)	O3-C3	1.280(2)
Mn1-O3w	2.167(1)	C1-C2	1.360 (2)
O1-C7	1.265 (2)	C4-C5	1.356 (2)
O2w-Mn1-O1w	91.64 (6)	O3w-Mn1-O1w	89.51 (5)
$O2w-Mn1-O1w^{i}$	88.36 (6)	$O3w-Mn1-O1w^{i}$	90.49 (5)
O2w-Mn1-O3w	89.27 (5)	N1-C6-C7	113.9 (1)
$O2w-Mn1-O3w^{i}$	90.73 (5)		

Symmetry code: (i) -x, -y + 1, -z.

Table 2 Hydrogen-bond geometry (Å, °).


$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$\begin{array}{c} O1w - H1w1 \cdots O4w^{ii} \\ O1w - H1w2 \cdots O1^{ii} \\ O2w - H2w1 \cdots O2^{i} \\ O2w - H2w2 \cdots O3^{iii} \\ O3w - H3w1 \cdots O1 \\ O3w - H3w2 \cdots O1^{iv} \\ O4w - H4w1 \cdots O3^{iii} \\ \end{array}$	0.85 (2) 0.85 (2) 0.84 (2) 0.85 (2) 0.86 (2) 0.86 (2) 0.86 (2)	1.878 (11) 1.99 (2) 1.85 (2) 1.89 (2) 1.84 (2) 2.03 (2) 2.22 (3)	2.727 (2) 2.831 (2) 2.698 (2) 2.728 (2) 2.687 (2) 2.835 (2) 3.007 (2)	175 (2) 167 (2) 176 (2) 174 (3) 171 (2) 155 (2) 154 (3)
$O4w - H4w1 \cdot \cdot \cdot O3^{v}$	0.86 (2)	1.99 (3)	2.804 (2)	158 (3)

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, $y-\frac{1}{2}$, $-z+\frac{1}{2}$; (iii) x+1, $-y+\frac{3}{2}$, $z+\frac{1}{2}$; (iv) x, $-y+\frac{3}{2}$, $z+\frac{1}{2}$; (v) x+1, y, z.

C-bound H atoms were placed in calculated positions, with C-H = 0.93 or 0.97 Å and $U_{\rm iso}({\rm H})=1.2U_{\rm eq}$ (C), and were included in the refinement in the riding-model approximation. H atoms of water molecules were located in Fourier difference maps and refined with the restraints O-H = 0.85 (1) Å and H···H = 1.39 (1) Å, and with $U_{\rm iso}({\rm H})=1.5U_{\rm eq}({\rm O})$.

Data collection: *RAPID-AUTO* (Rigaku Corporation, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2002); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science

Figure 1 A view of complex (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The hydrogen bond is shown as a

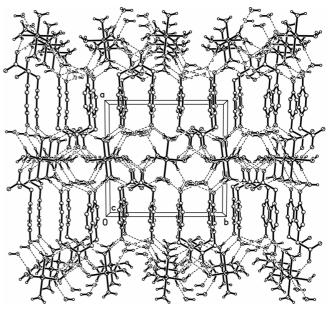


Figure 2 Packing diagram of the complex (I), viewed down the c axis. Hydrogen bonds are shown as dashed lines. C-bound H atoms have been omitted for clarity.

Foundation (No. B0007), Educational Committee Foundation of Heilongjiang Province and Heilongjiang University.

References

dashed line.

Gao, S., Zhang, Z.-Y., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). *Acta Cryst*. E**60**, m444–m446.

Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Zhang, Z.-Y., Gao, S., Huo, L.-H., Zhao, H., Zhao, J.-G. & Ng, S. W. (2004). Acta Cryst. E60, m544–m545.